The nucleocapsid domain is responsible for the ability of spleen necrosis virus (SNV) Gag polyprotein to package both SNV and murine leukemia virus RNA.
نویسندگان
چکیده
Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.
منابع مشابه
cis-Acting elements important for retroviral RNA packaging specificity.
Spleen necrosis virus (SNV) proteins can package RNA from distantly related murine leukemia virus (MLV), whereas MLV proteins cannot package SNV RNA efficiently. We used this nonreciprocal recognition to investigate regions of packaging signals that influence viral RNA encapsidation specificity. Although the MLV and SNV packaging signals (Psi and E, respectively) do not contain significant sequ...
متن کاملCooperative effect of gag proteins p12 and capsid during early events of murine leukemia virus replication.
The Gag polyprotein of murine leukemia virus (MLV) is processed into matrix (MA), p12, capsid (CA), and nucleocapsid (NC) proteins. p12 affects early events of virus replication and contains a PPPY motif important for virus release. To probe the functions of p12 in the early steps of MLV replication, we tested whether p12 can be replaced by spleen necrosis virus (SNV) p18, human immunodeficienc...
متن کاملNonreciprocal pseudotyping: murine leukemia virus proteins cannot efficiently package spleen necrosis virus-based vector RNA.
It has been documented that spleen necrosis virus (SNV) can package murine leukemia virus (MLV) RNA efficiently and propagate MLV vectors to the same titers as it propagates SNV-based vectors. Although the SNV packaging signal (E) and MLV packaging signal (Psi) have little sequence homology, similar double-hairpin RNA structures were predicted and supported by experimental evidence. To test whe...
متن کاملFunctional replacement of nucleocapsid flanking regions by heterologous counterparts with divergent primary sequences: effects of chimeric nucleocapsid on the retroviral replication cycle.
Nucleocapsid (NC) proteins in most retroviruses have a well-conserved Cys-His box(es) as well as more divergent flanking regions that are rich in basic residues. Mutations in the flanking regions can affect RNA packaging, virus assembly, and reverse transcription of the viral RNA. To gain a further understanding of the roles of NC flanking regions in the retroviral replication cycle, we generat...
متن کاملRNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1
The 5' untranslated region (UTR) of retroviruses contain structured replication motifs that impose barriers to efficient ribosome scanning. Two RNA structural motifs that facilitate efficient translation initiation despite a complex 5' UTR are internal ribosome entry site (IRES) and 5' proximal post-transcriptional control element (PCE). Here, stringent RNA and protein analyses determined the 5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 73 11 شماره
صفحات -
تاریخ انتشار 1999